enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uniformly connected space - Wikipedia

    en.wikipedia.org/wiki/Uniformly_connected_space

    In topology and related areas of mathematics a uniformly connected space or Cantor connected space is a uniform space U such that every uniformly continuous function from U to a discrete uniform space is constant. A uniform space U is called uniformly disconnected if it is not uniformly connected.

  3. Connectedness - Wikipedia

    en.wikipedia.org/wiki/Connectedness

    Thus, when discussing simply connected topological spaces, it is far more common to speak of simple connectivity than simple connectedness. On the other hand, in fields without a formally defined notion of connectivity, the word may be used as a synonym for connectedness. Another example of connectivity can be found in regular tilings.

  4. Uniformly convex space - Wikipedia

    en.wikipedia.org/wiki/Uniformly_convex_space

    The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...

  5. Homotopical connectivity - Wikipedia

    en.wikipedia.org/wiki/Homotopical_connectivity

    This gives a more concrete explanation for the utility of the definition of n-connectedness: for example, a space where the inclusion of the k-skeleton is n-connected (for n > k) – such as the inclusion of a point in the n-sphere – has the property that any cells in dimensions between k and n do not affect the lower-dimensional homotopy types.

  6. Connectedness theorem - Wikipedia

    en.wikipedia.org/wiki/Connectedness_theorem

    Zariski's connectedness theorem, a generalization of Zariski's main theorem Topics referred to by the same term This disambiguation page lists mathematics articles associated with the same title.

  7. Fulton–Hansen connectedness theorem - Wikipedia

    en.wikipedia.org/wiki/Fulton–Hansen...

    In mathematics, the Fulton–Hansen connectedness theorem is a result from intersection theory in algebraic geometry, for the case of subvarieties of projective space with codimension large enough to make the intersection have components of dimension at least 1.

  8. Compact convergence - Wikipedia

    en.wikipedia.org/wiki/Compact_convergence

    In mathematics compact convergence (or uniform convergence on compact sets) is a type of convergence that generalizes the idea of uniform convergence. It is associated with the compact-open topology .

  9. Grothendieck's connectedness theorem - Wikipedia

    en.wikipedia.org/wiki/Grothendieck's...

    In mathematics, Grothendieck's connectedness theorem, [1] [2] states that if A is a complete Noetherian local ring whose spectrum is k-connected and f is in the maximal ideal, then Spec(A/fA) is (k − 1)-connected.