Search results
Results from the WOW.Com Content Network
Radius of curvature sign convention for optical design. Radius of curvature (ROC) has specific meaning and sign convention in optical design. A spherical lens or mirror surface has a center of curvature located either along or decentered from the system local optical axis. The vertex of the lens
OSLO provides an integrated software environment that helps complete contemporary optical design. More than a lens design software, OSLO provides advanced tools for designing medical instrumentation, illuminations systems and telecommunications equipment, to name just a few typical applications.
Sign convention for Gaussian lens equation [25] Parameter Meaning + Sign − Sign s o: The distance between an object and a lens. Real object Virtual object s i: The distance between an image and a lens. Real image Virtual image f: The focal length of a lens. Conversing lens Diverging lens y o: The height of an object from the optical axis ...
The sign of the weight of a tensor density, such as the weight of the determinant of the covariant metric tensor. The active and passive sign convention of current, voltage and power in electrical engineering. A sign convention used for curved mirrors assigns a positive focal length to concave mirrors and a negative focal length to convex mirrors.
By convention, "f / #" is treated as a single symbol, and specific values of f / # are written by replacing the number sign with the value. The two ways to increase the f-stop are to either decrease the diameter of the entrance pupil or change to a longer focal length (in the case of a zoom lens , this can be done by simply adjusting the lens).
The signs are reversed for the back surface of the lens: R 2 is positive if the surface is concave, and negative if it is convex. This is an arbitrary sign convention; some authors choose different signs for the radii, which changes the equation for the focal length. For a thin lens, d is much smaller than one of the radii of curvature (either ...
For a thin lens in air, the focal length is the distance from the center of the lens to the principal foci (or focal points) of the lens.For a converging lens (for example a convex lens), the focal length is positive and is the distance at which a beam of collimated light will be focused to a single spot.
A sign convention is used such that and (the image distance from the lens) are positive for real object and image, respectively, and negative for virtual object and images, respectively. of a converging lens is positive while for a diverging lens it is negative.