Search results
Results from the WOW.Com Content Network
In general outline, photosynthesis is the opposite of cellular respiration: while photosynthesis is a process of reduction of carbon dioxide to carbohydrates, cellular respiration is the oxidation of carbohydrates or other nutrients to carbon dioxide. Nutrients used in cellular respiration include carbohydrates, amino acids and fatty acids.
They take energy from the environment in the form of sunlight or inorganic chemicals and use it to create fuel molecules such as carbohydrates. This mechanism is called primary production. Other organisms, called heterotrophs, take in autotrophs as food to carry out functions necessary for their life.
Carbohydrate metabolism is the whole of the biochemical processes responsible for the metabolic formation, breakdown, and interconversion of carbohydrates in living organisms. Carbohydrates are central to many essential metabolic pathways . [ 1 ]
These organisms perform photosynthesis through organelles called chloroplasts and are believed to have originated about 2 billion years ago. [1] Comparing the genes of chloroplast and cyanobacteria strongly suggests that chloroplasts evolved as a result of endosymbiosis with cyanobacteria that gradually lost the genes required to be free-living.
The scientist Charles Barnes first used the word 'photosynthesis' in 1893. This word is taken from two Greek words, photos, which means light, and synthesis, which in chemistry means making a substance by combining simpler substances. So, in the presence of light, synthesis of food is called 'photosynthesis'.
Terrestrial and aquatic phototrophs: plants grow on a fallen log floating in algae-rich water. Phototrophs (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light' and τροφή (trophḗ) 'nourishment') are organisms that carry out photon capture to produce complex organic compounds (e.g. carbohydrates) and acquire energy.
As the crops are rich in protein, carbohydrate, omega-3s, fatty-acids, and vitamin B12, Mr Haflidason believes growing microalgae this way, could help tackle global food insecurity.
A heterotroph (/ ˈ h ɛ t ər ə ˌ t r oʊ f,-ˌ t r ɒ f /; [1] [2] from Ancient Greek ἕτερος (héteros) 'other' and τροφή (trophḗ) 'nutrition') is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are ...