Search results
Results from the WOW.Com Content Network
Geometry of Complex Numbers is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger , and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press .
[2]: p. 30 In the fifth century BCE, Hippias used a curve that he called a quadratrix to both trisect the general angle and square the circle, and Nicomedes in the second century BCE showed how to use a conchoid to trisect an arbitrary angle; [2]: p. 37 but these methods also cannot be followed with just straightedge and compass.
Tarski's axioms are an axiom system for Euclidean geometry, specifically for that portion of Euclidean geometry that is formulable in first-order logic with identity (i.e. is formulable as an elementary theory). As such, it does not require an underlying set theory. The only primitive objects of the system are "points" and the only primitive ...
In particular, Euclidean geometry was more restrictive than affine geometry, which in turn is more restrictive than projective geometry. Klein proposed that group theory , a branch of mathematics that uses algebraic methods to abstract the idea of symmetry , was the most useful way of organizing geometrical knowledge; at the time it had already ...
Differentiable vector–valued functions from Euclidean space; Differentiation in Fréchet spaces; Direction (geometry) Disk (mathematics) Dissection problem; Distance between two parallel lines; Distance from a point to a line; Distortion (mathematics) Double wedge; Droz-Farny line theorem
Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described (although non-rigorously by modern standards) in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions from these.
These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model-based introduction to Euclidean geometry. Birkhoff's axiomatic system was utilized in the secondary-school textbook by Birkhoff and Beatley. [2]
Michael Henle calls the extension of triangle and conic section geometry to finite fields, in part III of the book, "an elegant theory of great generality", [4] and William Barker also writes approvingly of this aspect of the book, calling it "particularly novel" and possibly opening up new research directions.