Search results
Results from the WOW.Com Content Network
Dynamic frequency scaling (also known as CPU throttling) is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip.
Thermal Monitor 2 (TM2) is a throttling control method used on LGA 775 versions of the Core 2, Pentium Dual-Core, Pentium D, Pentium 4 and Celeron processors and also on the Pentium M series of processors. [1] TM2 reduces processor temperature by lowering the CPU clock multiplier, and thereby the processor core speed. [2]
This is generally known as Thermal Throttling in the case of reduction of clock speeds, or Thermal Shutdown in the case of a complete shutdown of the device or system. Cooling may be designed to reduce the ambient temperature within the case of a computer, such as by exhausting hot air, or to cool a single component or small area (spot cooling).
Thermal Design Power (TDP), also known as thermal design point, is the maximum amount of heat that a computer component (like a CPU, GPU or system on a chip) can generate and that its cooling system is designed to dissipate during normal operation at a non-turbo clock rate (base frequency).
typical thermal power, which is measured under normal load (for instance, AMD's average CPU power) maximum thermal power, which is measured under a worst-case load; For example, the Pentium 4 2.8 GHz has a 68.4 W typical thermal power and 85 W maximum thermal power. When the CPU is idle, it will draw far less than the typical thermal power.
The following is a list of PC games that have been deemed monetarily free by their creator or copyright holder. This includes free-to-play games, even if they include monetized micro transactions. List
Thermal simulations give engineers a visual representation of the temperature and airflow inside the equipment. Thermal simulations enable engineers to design the cooling system; to optimise a design to reduce power consumption, weight and cost; and to verify the thermal design to ensure there are no issues when the equipment is built.
Properly applied thermal interface materials displace the air that is present in the gaps between the two objects with a material that has a much-higher thermal conductivity. Air has a thermal conductivity of 0.022 W/(m·K) [19] while TIMs have conductivities of 0.3 W/(m·K) [20] and higher.