enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    Many common test statistics are tests for nested models and can be phrased as log-likelihood ratios or approximations thereof: e.g. the Z-test, the F-test, the G-test, and Pearson's chi-squared test; for an illustration with the one-sample t-test, see below.

  3. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    The commonly used chi-squared tests for goodness of fit to a distribution and for independence in contingency tables are in fact approximations of the log-likelihood ratio on which the G-tests are based. [4] The general formula for Pearson's chi-squared test statistic is

  4. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the ...

  5. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    The chi-square difference test is computed by subtracting the likelihood ratio chi-square statistics for the two models being compared. This value is then compared to the chi-square critical value at their difference in degrees of freedom. If the chi-square difference is smaller than the chi-square critical value, the new model fits the data ...

  6. Chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_test

    A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...

  7. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.

  8. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    Pinheiro and Bates (2000) showed that the true distribution of this likelihood ratio chi-square statistic could be substantially different from the naïve – often dramatically so. [4] The naïve assumptions could give significance probabilities ( p -values) that are, on average, far too large in some cases and far too small in others.

  9. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The chi distribution. The noncentral chi distribution; The chi-squared distribution, which is the sum of the squares of n independent Gaussian random variables. It is a special case of the Gamma distribution, and it is used in goodness-of-fit tests in statistics. The inverse-chi-squared distribution; The noncentral chi-squared distribution