Search results
Results from the WOW.Com Content Network
The likelihood ratio is a function of the data ; therefore, it is a statistic, although unusual in that the statistic's value depends on a parameter, . The likelihood-ratio test rejects the null hypothesis if the value of this statistic is too small.
The commonly used chi-squared tests for goodness of fit to a distribution and for independence in contingency tables are in fact approximations of the log-likelihood ratio on which the G-tests are based. [4] The general formula for Pearson's chi-squared test statistic is
G-tests are likelihood-ratio tests of statistical significance that are increasingly being used in situations where Pearson's chi-square tests were previously recommended. [7] The general formula for G is = (),
The chi-square difference test is computed by subtracting the likelihood ratio chi-square statistics for the two models being compared. This value is then compared to the chi-square critical value at their difference in degrees of freedom. If the chi-square difference is smaller than the chi-square critical value, the new model fits the data ...
For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the ...
Chi-squared test; Cochran–Armitage test for trend; Cochran–Mantel–Haenszel statistics; Correspondence analysis; Cronbach's alpha; Diagnostic odds ratio; G-test; Generalized estimating equations; Generalized linear models; Krichevsky–Trofimov estimator; Kuder–Richardson Formula 20; Linear discriminant analysis; Multinomial distribution ...
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
Because the square of a standard normal distribution is the chi-squared distribution with one degree of freedom, the probability of a result such as 1 heads in 10 trials can be approximated either by using the normal distribution directly, or the chi-squared distribution for the normalised, squared difference between observed and expected value.