enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Statistical conclusion validity - Wikipedia

    en.wikipedia.org/wiki/Statistical_conclusion...

    Statistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or "reasonable". This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to "reasonable" conclusions that use: quantitative, statistical, and ...

  3. Validity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Validity_(statistics)

    Statistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or 'reasonable'. This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to 'reasonable' conclusions ...

  4. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    For example, imagine a medical test, in which an experimenter might measure the concentration of a certain protein in the blood sample. The experimenter could adjust the threshold (black vertical line in the figure) and people would be diagnosed as having diseases if any number is detected above this certain threshold.

  5. Statistics - Wikipedia

    en.wikipedia.org/wiki/Statistics

    Statistics itself also provides tools for prediction and forecasting through statistical models. To use a sample as a guide to an entire population, it is important that it truly represents the overall population. Representative sampling assures that inferences and conclusions can safely extend from the sample to the population as a whole. A ...

  6. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power .

  7. Correlation does not imply causation - Wikipedia

    en.wikipedia.org/wiki/Correlation_does_not_imply...

    The above example commits the correlation-implies-causation fallacy, as it prematurely concludes that sleeping with one's shoes on causes headache. A more plausible explanation is that both are caused by a third factor, in this case going to bed drunk, which thereby gives rise to a correlation. So the conclusion is false. Example 2

  8. Faulty generalization - Wikipedia

    en.wikipedia.org/wiki/Faulty_generalization

    In statistics, it may involve basing broad conclusions regarding a statistical survey from a small sample group that fails to sufficiently represent an entire population. [1] [6] [7] Its opposite fallacy is called slothful induction, which consists of denying a reasonable conclusion of an inductive argument (e.g. "it was just a coincidence").

  9. Statistical assumption - Wikipedia

    en.wikipedia.org/wiki/Statistical_assumption

    Given that the validity of any conclusion drawn from a statistical inference depends on the validity of the assumptions made, it is clearly important that those assumptions should be reviewed at some stage. Some instances—for example where data are lacking—may require that researchers judge whether an assumption is reasonable. Researchers ...