Search results
Results from the WOW.Com Content Network
The superconducting nanowire single-photon detector (SNSPD or SSPD) is a type of optical and near-infrared single-photon detector based on a current-biased superconducting nanowire. [1] It was first developed by scientists at Moscow State Pedagogical University and at the University of Rochester in 2001.
The most important refinement is a definition of the camera signal nonlinearity better adapted to cameras with a higher dynamic range. The only two other major additions are: a) the total SNR curve which includes the spatial nonuniformities, and b) diagrams of horizontal and vertical profiles for a meaningful and well-arranged characterization ...
Nanowire lasers can be grown site-selectively on Si/SOI wafers with conventional MBE techniques, allowing for pristine structural quality without defects. Nanowire lasers using the group-III nitride and ZnO materials systems have been demonstrated to emit in the visible and ultraviolet, however infrared at the 1.3–1.55 μm is important for telecommunication bands. [3]
Photon counting eliminates gain noise, where the proportionality constant between analog signal out and number of photons varies randomly. Thus, the excess noise factor of a photon-counting detector is unity, and the achievable signal-to-noise ratio for a fixed number of photons is generally higher than the same detector without photon counting.
Schematic of silicon nanowire. Silicon nanowires, also referred to as SiNWs, are a type of semiconductor nanowire most often formed from a silicon precursor by etching of a solid or through catalyzed growth from a vapor or liquid phase. Such nanowires have promising applications in lithium-ion batteries, thermoelectrics and sensors.
Corn-like nanowire is a one-dimensional nanowire with interconnected nanoparticles on the surface, providing a large percentage of reactive facets. TiO 2 corn-like nanowires were first prepared by a surface modification concept using surface tension stress mechanism through a two consecutive hydrothermal operation, and showed an increase of 12% ...
Niobium nanowires in form oxide or nitride are used to detect single photons at low temperatures. The superconducting nanowire single-photon detector is an example of something made from these nano-structured materials. [1]
Developments in analysis, device miniaturization, fluidic design and integration have catapulted the development of integrated photonic crystal sensors in what is known as lab-on-a-chip devices of high sensitivity, low limit of detection, faster response time and low cost. [3]