Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The automorphism group of the Tutte 12-cage is of order 12,096 and is a semi-direct product of the projective special unitary group PSU(3,3) with the cyclic group Z/2Z. [1] It acts transitively on its edges but not on its vertices, making it a semi-symmetric graph, a regular graph that is edge-transitive but not vertex-transitive.
The number of connected simple cubic graphs on 4, 6, 8, 10, ... vertices is 1, 2, 5, 19, ... (sequence A002851 in the OEIS).A classification according to edge connectivity is made as follows: the 1-connected and 2-connected graphs are defined as usual.
Line chart showing the population of the town of Pushkin, Saint Petersburg from 1800 to 2010, measured at various intervals. A line chart or line graph, also known as curve chart, [1] is a type of chart that displays information as a series of data points called 'markers' connected by straight line segments. [2]
A cubic graph (all vertices have degree three) of girth g that is as small as possible is known as a g-cage (or as a (3,g)-cage).The Petersen graph is the unique 5-cage (it is the smallest cubic graph of girth 5), the Heawood graph is the unique 6-cage, the McGee graph is the unique 7-cage and the Tutte eight cage is the unique 8-cage. [3]
The cube of every connected graph necessarily contains a Hamiltonian cycle. [10] It is not necessarily the case that the square of a connected graph is Hamiltonian, and it is NP-complete to determine whether the square is Hamiltonian. [11] Nevertheless, by Fleischner's theorem, the square of a 2-vertex-connected graph is always Hamiltonian. [12]
Applying the Mycielskian repeatedly, starting with the one-edge graph, produces a sequence of graphs M i = μ(M i−1), sometimes called the Mycielski graphs. The first few graphs in this sequence are the graph M 2 = K 2 with two vertices connected by an edge, the cycle graph M 3 = C 5, and the Grötzsch graph M 4 with 11 vertices and 20 edges.
Petersen's theorem can also be applied to show that every maximal planar graph can be decomposed into a set of edge-disjoint paths of length three. In this case, the dual graph is cubic and bridgeless, so by Petersen's theorem it has a matching, which corresponds in the original graph to a pairing of adjacent triangle faces. Each pair of ...