Search results
Results from the WOW.Com Content Network
The alkaline fuel cell (AFC) or hydrogen-oxygen fuel cell was designed and first demonstrated publicly by Francis Thomas Bacon in 1959. It was used as a primary source of electrical energy in the Apollo space program. [41] The cell consists of two porous carbon electrodes impregnated with a suitable catalyst such as Pt, Ag, CoO, etc.
If the fuel is a light hydrocarbon, for example, methane, another function of the anode is to act as a catalyst for steam reforming the fuel into hydrogen. This provides another operational benefit to the fuel cell stack because the reforming reaction is endothermic, which cools the stack internally.
The alkaline fuel cell (AFC), also known as the Bacon fuel cell after its British inventor, Francis Thomas Bacon, is one of the most developed fuel cell technologies. Alkaline fuel cells consume hydrogen and pure oxygen, to produce potable water, heat, and electricity. They are among the most efficient fuel cells, having the potential to reach 70%.
A hydrogen fueled proton-exchange membrane fuel cell, for example, uses hydrogen gas (H 2) and oxygen (O 2) to produce electricity and water (H 2 O); a regenerative hydrogen fuel cell uses electricity and water to produce hydrogen and oxygen. [4] [5] [6] When the fuel cell is operated in regenerative mode, the anode for the electricity ...
The fuel cell has a high efficiency peak at low load, while at high load the efficiency drops. The hydrogen combustion engine has a peak at high load and can achieve similar efficiency levels as a hydrogen fuel cell. [34] From this, one can deduce that hydrogen combustion engines are a match in terms of efficiency for fuel cells for heavy duty ...
A proton exchange membrane fuel cell transforms the chemical energy liberated during the electrochemical reaction of hydrogen and oxygen to electrical energy, as opposed to the direct combustion of hydrogen and oxygen gases to produce thermal energy. A stream of hydrogen is delivered to the anode side of the MEA.
In most fuel cell configurations with liquid feeds, the fuel and oxidizing solutions almost always contain water which acts as a diffusion medium. In many hydrogen-oxygen fuel cells, the diffusion of oxygen at the cathode is rate limiting since the diffusivity of oxygen in water is much lower than that of hydrogen.
Oxyhydrogen is a mixture of hydrogen (H 2) and oxygen (O 2) gases. This gaseous mixture is used for torches to process refractory materials and was the first [1] gaseous mixture used for welding. Theoretically, a ratio of 2:1 hydrogen:oxygen is enough to achieve maximum efficiency; in practice a ratio 4:1 or 5:1 is needed to avoid an oxidizing ...