Search results
Results from the WOW.Com Content Network
10 0001 0000 1: byte → value push a byte onto the stack as an integer value: breakpoint ca 1100 1010 reserved for breakpoints in Java debuggers; should not appear in any class file caload 34 0011 0100 arrayref, index → value load a char from an array castore 55 0101 0101 arrayref, index, value → store a char into an array checkcast c0 ...
Microsoft's Shift JIS variant is known simply as "Code page 932" on Microsoft Windows, however this is ambiguous as IBM's code page 932, while also a Shift JIS variant, lacks the NEC and NEC-selected double-byte vendor extensions which are present in Microsoft's variant (although both include the IBM extensions) and preserves the 1978 ordering of JIS X 0208.
Java bytecode is the instruction set of the Java virtual machine (JVM), the language to which Java and other JVM-compatible source code is compiled. [1] Each instruction is represented by a single byte , hence the name bytecode , making it a compact form of data .
These instructions are also available in 32-bit mode, in which they operate on 32-bit registers (eax, ebx, etc.) and values instead of their 16-bit (ax, bx, etc.) counterparts. The updated instruction set is grouped according to architecture ( i186 , i286 , i386 , i486 , i586 / i686 ) and is referred to as (32-bit) x86 and (64-bit) x86-64 (also ...
There was no code-point for any ¥ symbol in the original (7-bit) US-ASCII and consequently many early systems reassigned 5C (allocated to the backslash (\) in ASCII) to the yen sign. With the arrival of 8-bit encoding, the ISO/IEC 8859-1 ("ISO Latin 1") character set assigned code point A5 to the ¥ in 1985; Unicode continues this encoding.
Flat thunks allowed 32-bit code to call into 16-bit libraries, and the scheme was used extensively inside Windows 95's libraries to avoid porting the whole OS to Win32 in one batch. In Windows NT, the OS was pure 32-bit, except parts for compatibility with 16-bit applications, and only generic thunks were available to thunk from Win16 to Win32 ...
A 32-bit register can store 2 32 different values. The range of integer values that can be stored in 32 bits depends on the integer representation used. With the two most common representations, the range is 0 through 4,294,967,295 (2 32 − 1) for representation as an binary number, and −2,147,483,648 (−2 31) through 2,147,483,647 (2 31 − 1) for representation as two's complement.
This is a list of some binary codes that are (or have been) used to represent text as a sequence of binary digits "0" and "1". Fixed-width binary codes use a set number of bits to represent each character in the text, while in variable-width binary codes, the number of bits may vary from character to character.