enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =. However, to optimize a twice-differentiable f {\displaystyle f} , our goal is to find the roots of f ′ {\displaystyle f'} .

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    It is easy to find situations for which Newton's method oscillates endlessly between two distinct values. For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x-axis at 1 and that the tangent line to f at 1 intersects the x-axis at 0. [19]

  4. Line search - Wikipedia

    en.wikipedia.org/wiki/Line_search

    Newton's method is a special case of a curve-fitting method, in which the curve is a degree-two polynomial, constructed using the first and second derivatives of f. If the method is started close enough to a non-degenerate local minimum (= with a positive second derivative), then it has quadratic convergence.

  5. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    It has similarities with Quasi-Newton methods. Conditional gradient method (Frank–Wolfe) for approximate minimization of specially structured problems with linear constraints, especially with traffic networks. For general unconstrained problems, this method reduces to the gradient method, which is regarded as obsolete (for almost all problems).

  6. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Newton's method — based on linear approximation around the current iterate; quadratic convergence Kantorovich theorem — gives a region around solution such that Newton's method converges; Newton fractal — indicates which initial condition converges to which root under Newton iteration; Quasi-Newton method — uses an approximation of the ...

  7. De analysi per aequationes numero terminorum infinitas

    en.wikipedia.org/wiki/De_analysi_per_aequationes...

    Composed in 1669, [4] during the mid-part of that year probably, [5] from ideas Newton had acquired during the period 1665–1666. [4] Newton wrote And whatever the common Analysis performs by Means of Equations of a finite number of Terms (provided that can be done) this new method can always perform the same by means of infinite Equations.

  8. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    [7]: chpt.11 Newton's method can be combined with line search for an appropriate step size, and it can be mathematically proven to converge quickly. Other efficient algorithms for unconstrained minimization are gradient descent (a special case of steepest descent).

  9. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.