enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    A totient number is a value of Euler's totient function: that is, an m for which there is at least one n for which φ(n) = m. The valency or multiplicity of a totient number m is the number of solutions to this equation. [41] A nontotient is a natural number which is not a totient number. Every odd integer exceeding 1 is trivially a nontotient.

  3. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...

  4. Totient summatory function - Wikipedia

    en.wikipedia.org/wiki/Totient_summatory_function

    In number theory, the totient summatory function is a summatory function of Euler's totient function defined by ():= = (),.It is the number of ordered pairs of coprime integers (p,q), where 1 ≤ p ≤ q ≤ n.

  5. Glossary of number theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_number_theory

    Euler's theorem Euler's theorem states that if n and a are coprime positive integers, then a φ(n) is congruent to 1 mod n. Euler's theorem generalizes Fermat's little theorem. Euler's totient function For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive.

  6. Reduced residue system - Wikipedia

    en.wikipedia.org/wiki/Reduced_residue_system

    Here φ denotes Euler's totient function. ... {1, 5, 7, 11}. The cardinality of this set can be calculated with the totient function: φ(12) = 4. Some other reduced ...

  7. Primitive element (finite field) - Wikipedia

    en.wikipedia.org/wiki/Primitive_element_(finite...

    The number of primitive elements in a finite field GF(q) is φ(q − 1), where φ is Euler's totient function, which counts the number of elements less than or equal to m that are coprime to m. This can be proved by using the theorem that the multiplicative group of a finite field GF( q ) is cyclic of order q − 1 , and the fact that a finite ...

  8. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    n is given by Euler's totient function φ (n) (sequence A000010 in the OEIS). And then, Euler's theorem says that a φ (n) ≡ 1 (mod n) for every a coprime to n; the lowest power of a that is congruent to 1 modulo n is called the multiplicative order of a modulo n.

  9. Root of unity modulo n - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity_modulo_n

    In fact, these integers are roots of unity modulo n by Euler's theorem, and the other integers cannot be roots of unity modulo n, because they are zero divisors modulo n. A primitive root modulo n, is a generator of the group of units of the ring of integers modulo n.