enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    A totient number is a value of Euler's totient function: that is, an m for which there is at least one n for which φ(n) = m. The valency or multiplicity of a totient number m is the number of solutions to this equation. [41] A nontotient is a natural number which is not a totient number. Every odd integer exceeding 1 is trivially a nontotient.

  3. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...

  4. Totient summatory function - Wikipedia

    en.wikipedia.org/wiki/Totient_summatory_function

    In number theory, the totient summatory function is a summatory function of Euler's totient function defined by ():= = (),.It is the number of ordered pairs of coprime integers (p,q), where 1 ≤ p ≤ q ≤ n.

  5. Glossary of number theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_number_theory

    Euler's theorem Euler's theorem states that if n and a are coprime positive integers, then a φ(n) is congruent to 1 mod n. Euler's theorem generalizes Fermat's little theorem. Euler's totient function For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive.

  6. Reduced residue system - Wikipedia

    en.wikipedia.org/wiki/Reduced_residue_system

    Here φ denotes Euler's totient function. ... {1, 5, 7, 11}. The cardinality of this set can be calculated with the totient function: φ(12) = 4. Some other reduced ...

  7. Primitive element (finite field) - Wikipedia

    en.wikipedia.org/wiki/Primitive_element_(finite...

    The number of primitive elements in a finite field GF(q) is φ(q − 1), where φ is Euler's totient function, which counts the number of elements less than or equal to m that are coprime to m. This can be proved by using the theorem that the multiplicative group of a finite field GF( q ) is cyclic of order q − 1 , and the fact that a finite ...

  8. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    Over a finite field with a prime number p of elements, for any integer n that is not a multiple of p, the cyclotomic polynomial factorizes into () irreducible polynomials of degree d, where () is Euler's totient function and d is the multiplicative order of p modulo n.

  9. Average order of an arithmetic function - Wikipedia

    en.wikipedia.org/wiki/Average_order_of_an...

    An average order of φ(n), Euler's totient function of n, is 6n / π 2; An average order of r(n), the number of ways of expressing n as a sum of two squares, is π; The average order of representations of a natural number as a sum of three squares is 4πn / 3;