enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Bipartite_graph

    The degree sequence of a bipartite graph is the pair of lists each containing the degrees of the two parts and . For example, the complete bipartite graph K 3,5 has degree sequence (,,), (,,,,). Isomorphic bipartite graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a bipartite graph; in ...

  3. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.

  4. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    A complete bipartite graph K m,n has a maximum matching of size min{m,n}. A complete bipartite graph K n,n has a proper n-edge-coloring corresponding to a Latin square. [14] Every complete bipartite graph is a modular graph: every triple of vertices has a median that belongs to shortest paths between each pair of vertices. [15]

  5. Incidence coloring - Wikipedia

    en.wikipedia.org/wiki/Incidence_coloring

    They proved () for bipartite graphs. [13] In case of regular bipartite graphs equality holds. Subcubic bipartite graphs admit an interval incidence coloring using four, five or six colors. They have also proved incidence 5-colorability can be decided in linear time for bipartite graphs with ∆(G) = 4.

  6. Barnette's conjecture - Wikipedia

    en.wikipedia.org/wiki/Barnette's_conjecture

    A graph is cubic (or 3-regular) if each vertex is the endpoint of exactly three edges. Finally, a graph is Hamiltonian if there exists a cycle that passes through each of its vertices exactly once. Barnette's conjecture states that every cubic bipartite polyhedral graph is Hamiltonian.

  7. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    There is also a constant s which is at most the cardinality of a maximum matching in the graph. The goal is to find a minimum-cost matching of size exactly s. The most common case is the case in which the graph admits a one-sided-perfect matching (i.e., a matching of size r), and s=r. Unbalanced assignment can be reduced to a balanced assignment.

  8. Hall's marriage theorem - Wikipedia

    en.wikipedia.org/wiki/Hall's_marriage_theorem

    The graph theoretic formulation of Marshal Hall's extension of the marriage theorem can be stated as follows: Given a bipartite graph with sides A and B, we say that a subset C of B is smaller than or equal in size to a subset D of A in the graph if there exists an injection in the graph (namely, using only edges of the graph) from C to D, and ...

  9. Zarankiewicz problem - Wikipedia

    en.wikipedia.org/wiki/Zarankiewicz_problem

    A bipartite graph with 4 vertices on each side, 13 edges, and no , subgraph, and an equivalent set of 13 points in a 4 × 4 grid, showing that (;).. The number (;) asks for the maximum number of edges in a bipartite graph with vertices on each side that has no 4-cycle (its girth is six or more).