enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Retraction (topology) - Wikipedia

    en.wikipedia.org/wiki/Retraction_(topology)

    A space is an absolute neighborhood retract for the class , written ⁡ (), if is in and whenever is a closed subset of a space in , is a neighborhood retract of . Various classes C {\displaystyle {\mathcal {C}}} such as normal spaces have been considered in this definition, but the class M {\displaystyle {\mathcal {M}}} of metrizable spaces ...

  3. Karol Borsuk - Wikipedia

    en.wikipedia.org/wiki/Karol_Borsuk

    Karol Borsuk (8 May 1905 – 24 January 1982) was a Polish mathematician. His main area of interest was topology . He made significant contributions to shape theory , a term which he coined.

  4. Section (category theory) - Wikipedia

    en.wikipedia.org/wiki/Section_(category_theory)

    The concept in topology was defined by Karol Borsuk in 1931. [ 2 ] Borsuk's student, Samuel Eilenberg , was with Saunders Mac Lane the founder of category theory, and (as the earliest publications on category theory concerned various topological spaces) one might have expected this term to have initially be used.

  5. Bing–Borsuk conjecture - Wikipedia

    en.wikipedia.org/wiki/Bing–Borsuk_conjecture

    In mathematics, the Bing–Borsuk conjecture states that every -dimensional homogeneous absolute neighborhood retract space is a topological manifold. The conjecture has been proved for dimensions 1 and 2, and it is known that the 3-dimensional version of the conjecture implies the Poincaré conjecture .

  6. Using the Borsuk–Ulam Theorem - Wikipedia

    en.wikipedia.org/wiki/Using_the_Borsuk–Ulam...

    Using the Borsuk–Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry is a graduate-level mathematics textbook in topological combinatorics. It describes the use of results in topology , and in particular the Borsuk–Ulam theorem , to prove theorems in combinatorics and discrete geometry .

  7. Shape theory (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Shape_theory_(mathematics)

    Shape theory is a branch of topology that provides a more global view of the topological spaces than homotopy theory. The two coincide on compacta dominated homotopically by finite polyhedra . Shape theory associates with the Čech homology theory while homotopy theory associates with the singular homology theory.

  8. Brouwer fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

    John Nash used the theorem in game theory to prove the existence of an equilibrium strategy profile. The theorem proved its worth in more than one way. During the 20th century numerous fixed-point theorems were developed, and even a branch of mathematics called fixed-point theory. [38] Brouwer's theorem is probably the most important. [39]

  9. Retract (group theory) - Wikipedia

    en.wikipedia.org/wiki/Retract_(group_theory)

    The following is known about retracts: A subgroup is a retract if and only if it has a normal complement. [4] The normal complement, specifically, is the kernel of the retraction. Every direct factor is a retract. [1] Conversely, any retract which is a normal subgroup is a direct factor. [5] Every retract has the congruence extension property.

  1. Related searches borsuk's 7 theory of retracts and learning model pdf version

    borsuk's 7 theory of retracts and learning model pdf version download