Search results
Results from the WOW.Com Content Network
The lengths of the horizontal sides of the original square and the four root rectangles derived from it, are respectively ,,,,. [ 2 ] A root rectangle is a rectangle in which the ratio of the longer side to the shorter is the square root of an integer , such as √ 2 , √ 3 , etc. [ 2 ]
The rectangle of corollary 1 is now a symmetrical trapezium with equal diagonals and a pair of equal sides. The parallel sides differ in length by units where: = (+) It will be easier in this case to revert to the standard statement of Ptolemy's theorem:
A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals [4] (therefore only two sides are parallel). It is a special case of an antiparallelogram , and its angles are not right angles and not all equal, though opposite angles are equal.
adjacent angles in a parallelogram are supplementary (add to 180°) and, the diagonals of a rectangle are equal and cross each other in their median point. Let there be a right angle ∠ ABC, r a line parallel to BC passing by A, and s a line parallel to AB passing by C. Let D be the point of intersection of lines r and s.
If the diagram is further subdivided by perpendicular lines through U and V, the lengths of the diagonal and its subsections can be expressed as trigonometric functions of arguments 72 and 36 degrees, the angles of the golden triangle: Diagonal segments of the golden rectangle measure nested pentagons. The ratio AU:SV is φ 2.
In any isosceles trapezoid, two opposite sides (the bases) are parallel, and the two other sides (the legs) are of equal length (properties shared with the parallelogram), and the diagonals have equal length. The base angles of an isosceles trapezoid are equal in measure (there are in fact two pairs of equal base angles, where one base angle is ...
Isosceles trapezium (UK) or isosceles trapezoid (US): one pair of opposite sides are parallel and the base angles are equal in measure. Alternative definitions are a quadrilateral with an axis of symmetry bisecting one pair of opposite sides, or a trapezoid with diagonals of equal length. Parallelogram: a quadrilateral with two pairs of ...
Equivalently, a convex quadrilateral is cyclic if and only if each exterior angle is equal to the opposite interior angle. In 1836 Duncan Gregory generalized this result as follows: Given any convex cyclic 2n-gon, then the two sums of alternate interior angles are each equal to (n-1). [4]