Search results
Results from the WOW.Com Content Network
In computer science, heapsort is a comparison-based sorting algorithm which can be thought of as "an implementation of selection sort using the right data structure." [3] Like selection sort, heapsort divides its input into a sorted and an unsorted region, and it iteratively shrinks the unsorted region by extracting the largest element from it and inserting it into the sorted region.
Range minimum query reduced to the lowest common ancestor problem.. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l …
Elements are distributed among bins Then, elements are sorted within each bin. Bucket sort, or bin sort, is a sorting algorithm that works by distributing the elements of an array into a number of buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sorting algorithm.
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
In computer science, selection sort is an in-place comparison sorting algorithm.It has a O(n 2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort.
It works by taking elements from the list one by one and inserting them in their correct position into a new sorted list similar to how one puts money in their wallet. [22] In arrays, the new list and the remaining elements can share the array's space, but insertion is expensive, requiring shifting all following elements over by one.
The largest element of the first run is 10 and it would have to be added at the fifth position of the second run in order to preserve its order. Therefore, [1, 2, 3] and [12, 14, 17] are already in their final positions and the runs in which elements movements are required are [6, 10] and [4, 5, 7, 9].
One of the two elements in the second level, which is a max (or odd) level, is the greatest element in the min-max heap Let x {\displaystyle x} be any node in a min-max heap. If x {\displaystyle x} is on a min (or even) level, then x . k e y {\displaystyle x.key} is the minimum key among all keys in the subtree with root x {\displaystyle x} .