enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    Every normed vector space can be "uniquely extended" to a Banach space, which makes normed spaces intimately related to Banach spaces. Every Banach space is a normed space but converse is not true. For example, the set of the finite sequences of real numbers can be normed with the Euclidean norm, but it is not complete for this norm.

  3. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    Other examples of infinite-dimensional normed vector spaces can be found in the Banach space article. Generally, these norms do not give the same topologies. For example, an infinite-dimensional ℓ p {\displaystyle \ell ^{p}} space gives a strictly finer topology than an infinite-dimensional ℓ q {\displaystyle \ell ^{q}} space when p < q ...

  4. Dvoretzky's theorem - Wikipedia

    en.wikipedia.org/wiki/Dvoretzky's_theorem

    In mathematics, Dvoretzky's theorem is an important structural theorem about normed vector spaces proved by Aryeh Dvoretzky in the early 1960s, [1] answering a question of Alexander Grothendieck. In essence, it says that every sufficiently high-dimensional normed vector space will have low-dimensional subspaces that are approximately Euclidean.

  5. Schur's property - Wikipedia

    en.wikipedia.org/wiki/Schur's_property

    In mathematics, Schur's property, named after Issai Schur, is the property of normed spaces that is satisfied precisely if weak convergence of sequences entails convergence in norm. Motivation [ edit ]

  6. Banach lattice - Wikipedia

    en.wikipedia.org/wiki/Banach_lattice

    Banach lattices are extremely common in functional analysis, and "every known example [in 1948] of a Banach space [was] also a vector lattice." [1] In particular: ℝ, together with its absolute value as a norm, is a Banach lattice.

  7. Bs space - Wikipedia

    en.wikipedia.org/wiki/Bs_space

    In the mathematical field of functional analysis, the space bs consists of all infinite sequences (x i) of real numbers or complex numbers such that | = | is finite. The set of such sequences forms a normed space with the vector space operations defined componentwise, and the norm given by ‖ ‖ = | = |.

  8. Strictly convex space - Wikipedia

    en.wikipedia.org/wiki/Strictly_convex_space

    In mathematics, a strictly convex space is a normed vector space (X, || ||) for which the closed unit ball is a strictly convex set. Put another way, a strictly convex space is one for which, given any two distinct points x and y on the unit sphere ∂B (i.e. the boundary of the unit ball B of X), the segment joining x and y meets ∂B only at ...

  9. Weak topology - Wikipedia

    en.wikipedia.org/wiki/Weak_topology

    Moreover, the closed unit ball in a normed space X is compact in the weak topology if and only if X is reflexive. In more generality, let F be locally compact valued field (e.g., the reals, the complex numbers, or any of the p-adic number systems). Let X be a normed topological vector space over F, compatible with the absolute value in F.