Search results
Results from the WOW.Com Content Network
Desorption electrospray ionization (DESI) is an ambient ionization technique that can be coupled to mass spectrometry (MS) for chemical analysis of samples at atmospheric conditions. Coupled ionization sources-MS systems are popular in chemical analysis because the individual capabilities of various sources combined with different MS systems ...
Extractive electrospray ionization is a spray-type, ambient ionization method that uses two merged sprays, one of which is generated by electrospray. [ 49 ] Laser-based electrospray-based ambient ionization is a two-step process in which a pulsed laser is used to desorb or ablate material from a sample and the plume of material interacts with ...
Nanospray desorption electrospray ionization (nano-DESI) is an ambient pressure ionization technique used in mass spectrometry (MS) for chemical analysis of organic molecules. [1] In this technique, analytes are desorbed into a liquid bridge formed between two capillaries and the sampling surface. [ 2 ]
Electrostatic spray ionization (ESTASI) is an ambient ionization method for mass spectrometry (MS) analysis of samples located on a flat or porous surface, or inside a microchannel. It was developed in 2011 by Professor Hubert H. Girault ’s group at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. [ 1 ]
DART resulted from conversations between Laramee and Cody about the development of an atmospheric pressure ion source to replace the radioactive sources in handheld chemical weapons detectors.DART was developed in late 2002 to early 2003 by Cody and Laramee as a new atmospheric pressure ionization process, [2] and a US patent application was filed in April 2003.
Schematic diagram of ion trap mass spectrometer with an electrospray ionization (ESI) source and Paul ion trap. A Paul trap is a type of quadrupole ion trap that uses static direct current (DC) and radio frequency (RF) oscillating electric fields to trap ions. Paul traps are commonly used as components of a mass spectrometer.
The energy of the electron beam is typically 70 electronvolts and the ionization process typically produces extensive fragmentation of the chemical bonds of the molecule. Due to the high vacuum pressure in the ionization chamber, the mean free path of molecules are varying from 10 cm to 1 km and then the fragmentations are unimolecular processes.
Molecular ion beam deposition employs electrospray ionization or MALDI sources. [3] The ions are then accelerated, focused or deflected using high voltages or magnetic fields. Optional deceleration at the substrate can be employed to define the deposition energy. This energy usually ranges from a few eV up to a few keV. [3]