enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Flow-based generative model - Wikipedia

    en.wikipedia.org/wiki/Flow-based_generative_model

    A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.

  3. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    In fluid dynamics, normalized root mean square deviation (NRMSD), coefficient of variation (CV), and percent RMS are used to quantify the uniformity of flow behavior such as velocity profile, temperature distribution, or gas species concentration. The value is compared to industry standards to optimize the design of flow and thermal equipment ...

  4. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging. In more complicated cases, normalization may refer to more sophisticated adjustments where the intention is to bring the entire probability distributions of adjusted values into alignment.

  5. Statistical model - Wikipedia

    en.wikipedia.org/wiki/Statistical_model

    In Bayesian statistics, the model is extended by adding a probability distribution over the parameter space . A statistical model can sometimes distinguish two sets of probability distributions. The first set Q = { F θ : θ ∈ Θ } {\displaystyle {\mathcal {Q}}=\{F_{\theta }:\theta \in \Theta \}} is the set of models considered for inference.

  6. Normalizing constant - Wikipedia

    en.wikipedia.org/wiki/Normalizing_constant

    This is the probability mass function of the Poisson distribution with expected value λ. Note that if the probability density function is a function of various parameters, so too will be its normalizing constant. The parametrised normalizing constant for the Boltzmann distribution plays a central role in statistical mechanics.

  7. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Simple back-of-the-envelope test takes the sample maximum and minimum and computes their z-score, or more properly t-statistic (number of sample standard deviations that a sample is above or below the sample mean), and compares it to the 68–95–99.7 rule: if one has a 3σ event (properly, a 3s event) and substantially fewer than 300 samples, or a 4s event and substantially fewer than 15,000 ...

  8. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    For high temperatures (), all actions have nearly the same probability and the lower the temperature, the more expected rewards affect the probability. For a low temperature ( τ → 0 + {\displaystyle \tau \to 0^{+}} ), the probability of the action with the highest expected reward tends to 1.

  9. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    By regularizing for time, model complexity can be controlled, improving generalization. Early stopping is implemented using one data set for training, one statistically independent data set for validation and another for testing. The model is trained until performance on the validation set no longer improves and then applied to the test set.