Search results
Results from the WOW.Com Content Network
Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.
In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix.The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently.
For a normal matrix A (and only for a normal matrix), the eigenvectors can also be made orthonormal (=) and the eigendecomposition reads as =. In particular all unitary , Hermitian , or skew-Hermitian (in the real-valued case, all orthogonal , symmetric , or skew-symmetric , respectively) matrices are normal and therefore possess this property.
The Lanczos algorithm is most often brought up in the context of finding the eigenvalues and eigenvectors of a matrix, but whereas an ordinary diagonalization of a matrix would make eigenvectors and eigenvalues apparent from inspection, the same is not true for the tridiagonalization performed by the Lanczos algorithm; nontrivial additional steps are needed to compute even a single eigenvalue ...
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
it is easy to construct a hyperplane that divides the points into arbitrary clusters. Of course, this creates linearly independent vectors, so there is no covariance on which to perform eigendecomposition explicitly as we would in linear PCA.
Top: The action of M, indicated by its effect on the unit disc D and the two canonical unit vectors e 1 and e 2. Left: The action of V ⁎, a rotation, on D, e 1, and e 2. Bottom: The action of Σ, a scaling by the singular values σ 1 horizontally and σ 2 vertically.
Pages for logged out editors learn more. Contributions; Talk; Eigendecomposition