Search results
Results from the WOW.Com Content Network
The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms, in order to calculate points of ...
In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.
The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types of geometric intersection include: Line–plane intersection; Line–sphere intersection; Intersection of a polyhedron with a line
This is found by noticing that the line must be perpendicular to both plane normals, and so parallel to their cross product (this cross product is zero if and only if the planes are parallel, and are therefore non-intersecting or entirely coincident).
In mathematics, a plane is a two-dimensional space or flat surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. When working exclusively in two-dimensional Euclidean space, the definite article is used, so the Euclidean plane refers to the ...
For a plane, the two angles are called its strike (angle) and its dip (angle). A strike line is the intersection of a horizontal plane with the observed planar feature (and therefore a horizontal line), and the strike angle is the bearing of this line (that is, relative to geographic north or from magnetic north). The dip is the angle between a ...
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...
If two lines ℓ 1 and ℓ 2 intersect, then ℓ 1 ∩ ℓ 2 is a point. If p is a point not lying on the same plane, then (ℓ 1 ∩ ℓ 2) + p = (ℓ 1 + p) ∩ (ℓ 2 + p), both representing a line. But when ℓ 1 and ℓ 2 are parallel, this distributivity fails, giving p on the left-hand side and a third parallel line on the right-hand side.