Search results
Results from the WOW.Com Content Network
A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47.
Let k be defined as an element in F, the array of Fibonacci numbers. n = F m is the array size. If n is not a Fibonacci number, let F m be the smallest number in F that is greater than n. The array of Fibonacci numbers is defined where F k+2 = F k+1 + F k, when k ≥ 0, F 1 = 1, and F 0 = 1. To test whether an item is in the list of ordered ...
In mathematics, the Fibonacci sequence is a sequence in which each element is the sum of the two elements that precede it. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted F n .
In mathematics, the Fibonomial coefficients or Fibonacci-binomial coefficients are defined as ( n k ) F = F n F n − 1 ⋯ F n − k + 1 F k F k − 1 ⋯ F 1 = n ! F k !
A digit sequence with rank r may be formed either by adding the digit 2 to a sequence with rank r − 2, or by adding the digit 1 to a sequence with rank r − 1.If f is the function that maps r to the number of different digit sequences of that rank, therefore, f satisfies the recurrence relation f (r) = f (r − 2) + f (r − 1) defining the Fibonacci numbers, but with slightly different ...
Inspired by a similar Stolarsky array previously defined by Stolarsky (1977), Morrison (1980) defined the Wythoff array as follows. Let = + denote the golden ratio; then the th winning position in Wythoff's game is given by the pair of positive integers (⌊ ⌋, ⌊ ⌋), where the numbers on the left and right sides of the pair define two complementary Beatty sequences that together include ...
A Lagged Fibonacci generator (LFG or sometimes LFib) is an example of a pseudorandom number generator. This class of random number generator is aimed at being an improvement on the 'standard' linear congruential generator. These are based on a generalisation of the Fibonacci sequence. The Fibonacci sequence may be described by the recurrence ...
This characterization is exact: every sequence of complex numbers that can be written in the above form is constant-recursive. [20] For example, the Fibonacci number is written in this form using Binet's formula: [21] =,