Search results
Results from the WOW.Com Content Network
Fibonacci numbers arise in the analysis of the Fibonacci heap data structure. A one-dimensional optimization method, called the Fibonacci search technique, uses Fibonacci numbers. [74] The Fibonacci number series is used for optional lossy compression in the IFF 8SVX audio file format used on Amiga computers.
A Fibonacci sequence of order n is an integer sequence in which each sequence element is the sum of the previous elements (with the exception of the first elements in the sequence). The usual Fibonacci numbers are a Fibonacci sequence of order 2.
The Fibonacci code is closely related to the Zeckendorf representation, a positional numeral system that uses Zeckendorf's theorem and has the property that no number has a representation with consecutive 1s. The Fibonacci code word for a particular integer is exactly the integer's Zeckendorf representation with the order of its digits reversed ...
This characterization is exact: every sequence of complex numbers that can be written in the above form is constant-recursive. [20] For example, the Fibonacci number is written in this form using Binet's formula: [21] =,
In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials .
A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}
In the Fibonacci sequence, each number is the sum of the previous two numbers. Fibonacci omitted the "0" and first "1" included today and began the sequence with 1, 2, 3, ... . He carried the calculation up to the thirteenth place, the value 233, though another manuscript carries it to the next place, the value 377.
Inspired by a similar Stolarsky array previously defined by Stolarsky (1977), Morrison (1980) defined the Wythoff array as follows. Let = + denote the golden ratio; then the th winning position in Wythoff's game is given by the pair of positive integers (⌊ ⌋, ⌊ ⌋), where the numbers on the left and right sides of the pair define two complementary Beatty sequences that together include ...