Search results
Results from the WOW.Com Content Network
The Elements (Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean ...
Ancient Greek mathematicians first conceived straightedge-and-compass constructions, and a number of ancient problems in plane geometry impose this restriction. The ancient Greeks developed many constructions, but in some cases were unable to do so. Gauss showed that some polygons are constructible but that most are not.
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had ...
The main accomplishment of Oenopides as an astronomer was his determination of the angle between the plane of the celestial equator, and the zodiac (the yearly path of the Sun in the sky). He found this angle to be 24°. In effect this amounted to measuring the inclination of the Earth axis. Oenopides's result remained the standard value for ...
Geometry (from the Ancient Greek: γεωμετρία; geo- "earth", -metron "measurement") arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers (arithmetic). Classic geometry was focused in compass and straightedge constructions.
Euclid (/ ˈ j uː k l ɪ d /; ‹See Tfd› Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.
Geometric construction. The neusis construction consists of fitting a line element of given length (a) in between two given lines (l and m), in such a way that the line element, or its extension, passes through a given point P. That is, one end of the line element has to lie on l, the other end on m, while the line element is "inclined" towards P.
The Greek geometers called those terms “the square on AB,” etc. Similarly, the area of a rectangle formed by AB and CD was "the rectangle on AB and CD." These concepts gave the Greek geometers algebraic access to linear functions and quadratic functions , which latter the conic sections are.