Search results
Results from the WOW.Com Content Network
Because the square of a standard normal distribution is the chi-squared distribution with one degree of freedom, the probability of a result such as 1 heads in 10 trials can be approximated either by using the normal distribution directly, or the chi-squared distribution for the normalised, squared difference between observed and expected value.
Chi-squared distribution, showing χ2 on the x -axis and p -value (right tail probability) on the y -axis. A chi-squared test (also chi-square or χ2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical ...
The Pearson's chi-squared test statistic is defined as . The p-value of the test statistic is computed either numerically or by looking it up in a table. If the p-value is small enough (usually p < 0.05 by convention), then the null hypothesis is rejected, and we conclude that the observed data does not follow the multinomial distribution.
p. -value. In null-hypothesis significance testing, the p-value[note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2][3] A very small p -value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
In probability theory and statistics, the chi distribution is a continuous probability distribution over the non-negative real line. It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random ...
Using the poisson-weighted mixture representation for , and the fact that the sum of chi-squared random variables is also a chi-square, completes the result. The indices in the series are (1 + 2 i ) + ( k − 1) = k + 2 i as required.
The square of a standard normal random variable has a chi-squared distribution with one degree of freedom. If X is a Student’s t random variable with ν degree of freedom, then X 2 is an F (1,ν) random variable. If X is a double exponential random variable with mean 0 and scale λ, then |X| is an exponential random variable with mean λ.
The p-value was introduced by Karl Pearson [6] in the Pearson's chi-squared test, where he defined P (original notation) as the probability that the statistic would be at or above a given level. This is a one-tailed definition, and the chi-squared distribution is asymmetric, only assuming positive or zero values, and has only one tail, the ...