Search results
Results from the WOW.Com Content Network
The density of the Earth's atmosphere decreases nearly exponentially with altitude. The total mass of the atmosphere is M = ρ A H ≃ 1 kg/cm 2 within a column of one square centimeter above the ground (with ρ A = 1.29 kg/m 3 the atmospheric density on the ground at z = 0 m altitude, and H ≃ 8 km the average atmospheric scale height).
The thermosphere is the second-highest layer of Earth's atmosphere. It extends from the mesopause (which separates it from the mesosphere) at an altitude of about 80 km (50 mi; 260,000 ft) up to the thermopause at an altitude range of 500–1000 km (310–620 mi
The temperature of the thermopause could range from nearly absolute zero to 987.547 °C (1,810 °F). Below this, the atmosphere is defined to be active [ clarification needed ] on the insolation received, due to the increased presence of heavier gases such as monatomic oxygen.
Earth's turbopause lies near the mesopause, at the intersection of the mesosphere and the thermosphere, at an altitude of roughly 90 km (56 mi). [2] Some other turbopauses in the Solar System that are known include Venus' turbopause at about 130–135 km (81–84 mi), Mars' at about 130 km (81 mi), Jupiter's at roughly 385 km (239 mi), and ...
Average yearly temperature is 22.4 °C, ranging from an average minimum of 12.2 °C to a maximum of 29.9 °C. The average temperature range is 11.4 °C. [6] Variability throughout the year is small (standard deviation of 2.31 °C for the maximum monthly average and 4.11 °C for the minimum). The graph also shows the typical phenomenon of ...
The troposphere contains the boundary layer, and ranges in height from an average of 9 km (5.6 mi; 30,000 ft) at the poles, to 17 km (11 mi; 56,000 ft) at the Equator. [ 3 ] [ 4 ] In the absence of inversions and not considering moisture , the temperature lapse rate for this layer is 6.5 °C per kilometer, on average, according to the U.S ...
Based on the corrected data, SABER found that between 2002 and 2018, water vapor levels in the lower stratosphere were increasing at an average rate of 0.25 ppmv (around 5%) per decade, and in the upper stratosphere and mesosphere, water vapor levels were increasing at an average rate of 0.1-0.2 ppmv (around 2-3%) per decade. [10]
Presently "CIRA 1986" or CIRA-86 covers the height range up to 120 km as a set of tables. In the thermosphere, above about 100 km, CIRA-86 is identical to the more complicated NASA MSIS-86 model. All models are now available on the Web. The task group takes account of more recent data at bi-annual meetings in connection to COSPAR meeting.