Search results
Results from the WOW.Com Content Network
Unweighted, or "elementary", price indices only compare prices of a single type of good between two periods. They do not make any use of quantities or expenditure weights. They are called "elementary" because they are often used at the lower levels of aggregation for more comprehensive price indices. [2]
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
The degrees of freedom of this weighted, unbiased sample variance vary accordingly from N − 1 down to 0. The standard deviation is simply the square root of the variance above. As a side note, other approaches have been described to compute the weighted sample variance. [7]
Weighted means are commonly used in statistics to compensate for the presence of bias.For a quantity measured multiple independent times with variance, the best estimate of the signal is obtained by averaging all the measurements with weight = /, and the resulting variance is smaller than each of the independent measurements = /.
A weighting curve is a graph of a set of factors, that are used to 'weight' measured values of a variable according to their importance in relation to some outcome. An important example is frequency weighting in sound level measurement where a specific set of weighting curves known as A-, B-, C-, and D-weighting as defined in IEC 61672 [1] are used.
The top example shows a case where z is much less than the sum x + y of the other two sides, and the bottom example shows a case where the side z is only slightly less than x + y. If there are several different samples, a distance matrix can be created by making a tree for each pair of samples and calculating their UniFrac measure.
Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.
The second form above illustrates that the logarithm of the geometric mean is the weighted arithmetic mean of the logarithms of the individual values. If all the weights are equal, the weighted geometric mean simplifies to the ordinary unweighted geometric mean. [1]