enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  3. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths ⁠, ⁠ ⁠, ⁠ ⁠. ⁠ Letting ⁠ ⁠ be the semiperimeter of the triangle, = (+ +), the area ⁠ ⁠ is [1]

  4. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length ⁠ ⁠, which has area 1. There are several ways to calculate the area of an arbitrary triangle.

  5. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.

  6. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.

  7. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    The formula was described by Albrecht Ludwig Friedrich Meister (1724–1788) in 1769 [4] and is based on the trapezoid formula which was described by Carl Friedrich Gauss and C.G.J. Jacobi. [5] The triangle form of the area formula can be considered to be a special case of Green's theorem.

  8. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The area of a polygon can be calculated from individual quadrangles of the above type, from (analogously) individual triangle bounded by a segment of the polygon and two meridians, [15] by a line integral with Green's theorem, [16] or via an equal-area projection as commonly done in GIS.

  9. Barycentric coordinate system - Wikipedia

    en.wikipedia.org/wiki/Barycentric_coordinate_system

    One may prove these ratio formulas based on the facts that a triangle is half of a parallelogram, and the area of a parallelogram is easy to compute using a determinant. Specifically, let D = − A + B + C . {\displaystyle D=-A+B+C.}