Search results
Results from the WOW.Com Content Network
An American Rotary Phase Converter with a Transformer. A phase converter is a device that converts electric power provided as single phase to multiple phase or vice versa. The majority of phase converters are used to produce three-phase electric power from a single-phase source, thus allowing the operation of three-phase equipment at a site that only has single-phase electrical service.
The first locomotive with a phase converter (only for demonstration purposes) The Kandó phase converter (1933) The "Kandó" locomotive, the first locomotive using a phase converter system. At the beginning of the 20th century, there were two main principles of electric railway traction current systems: DC system; 16⅔ Hz single phase system
A single-phase, three-winding converter transformer. The converter transformers step up the voltage of the AC supply network. Using a star-to-delta or "wye-delta" connection of the transformer windings, the converter can operate with 12 pulses for each cycle in the AC supply, which eliminates numerous harmonic current components. The insulation ...
Wiring schematic for a simplified bipolar-field Gramme-ring single-phase–to–direct-current rotary converter. (In actual use, the converter is drum-wound and uses a multipolar field.) [2] Wiring schematic for a simplified two-phase–to–direct-current rotary converter, with the second phase connected at right angles to the first [3] Wiring schematic for a simplified three-phase–to ...
The two conducting valves connect two of the three AC phase voltages, in series, to the DC terminals. Thus, the DC output voltage at any given instant is given by the series combination of two AC phase voltages. For example, if valves V1 and V2 are conducting, the DC output voltage is given by the voltage of phase 1 minus the voltage of phase 3.
Most of the world uses 50 Hz 220 or 230 V single phase, or 400 V three-phase for residential and light industrial services. In this system, the primary distribution network supplies a few substations per area, and the 230 V / 400 V power from each substation is directly distributed to end users over a region of normally less than 1 km radius.
Assuming the desired voltage is the same on the two and three phase sides, the Scott-T transformer connection (shown right) consists of a centre-tapped 1:1 ratio main transformer, T1, and a √ 3 /2(≈86.6%) ratio teaser transformer, T2. The centre-tapped side of T1 is connected between two of the phases on the three-phase side.
For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage. This Scott T connection produces a true two-phase system with 90° time difference between the phases.