enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schumann resonances - Wikipedia

    en.wikipedia.org/wiki/Schumann_resonances

    The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.

  3. Radio atmospheric signal - Wikipedia

    en.wikipedia.org/wiki/Radio_atmospheric_signal

    Measurements of Schumann resonances at only a few stations around the world can monitor the global lightning activity fairly well. [14] One can apply the dispersive property of the Earth–ionosphere waveguide by measuring the group velocity of a sferic signal at different frequencies together with its direction of arrival. The group time delay ...

  4. Extremely low frequency - Wikipedia

    en.wikipedia.org/wiki/Extremely_low_frequency

    The fundamental Schumann resonance is at approximately 7.83 Hz, the frequency at which the wavelength equals the circumference of the Earth, and higher harmonics occur at 14.1, 20.3, 26.4, and 32.4 Hz, etc. Lightning strikes excite these resonances, causing the Earth–ionosphere cavity to "ring" like a bell, resulting in a peak in the noise ...

  5. Resonance-enhanced multiphoton ionization - Wikipedia

    en.wikipedia.org/wiki/Resonance-enhanced_multi...

    The homodyne detection method mixes the detected microwave electric field with its own source to produce a signal proportional to the product of the two. The signal frequency is converted down from tens of gigahertz to below one gigahertz so that the signal can be amplified and observed with standard electronic devices.

  6. Resonator - Wikipedia

    en.wikipedia.org/wiki/Resonator

    Abrupt change of impedance (e.g. open or short) in a transmission line causes reflection of the transmitted signal. Two such reflectors on a transmission line evoke standing waves between them and thus act as a one-dimensional resonator, with the resonance frequencies determined by their distance and the effective dielectric constant of the ...

  7. Absorption band - Wikipedia

    en.wikipedia.org/wiki/Absorption_band

    Absorptions bands in the Earth's atmosphere created by greenhouse gases and the resulting effects on transmitted radiation.. In spectroscopy, an absorption band is a range of wavelengths, frequencies or energies in the electromagnetic spectrum that are characteristic of a particular transition from initial to final state in a substance.

  8. Two-photon absorption - Wikipedia

    en.wikipedia.org/wiki/Two-photon_absorption

    Schematic of energy levels involved in two photons absorption. In atomic physics, two-photon absorption (TPA or 2PA), also called two-photon excitation or non-linear absorption, is the simultaneous absorption of two photons of identical or different frequencies in order to excite an atom or a molecule from one state (usually the ground state), via a virtual energy level, to a higher energy ...

  9. Doublet state - Wikipedia

    en.wikipedia.org/wiki/Doublet_state

    Examples of atoms in singlet, doublet, and triplet states. In quantum mechanics, a doublet is a composite quantum state of a system with an effective spin of 1/2, such that there are two allowed values of the spin component, −1/2 and +1/2. Quantum systems with two possible states are sometimes called two-level systems.