Search results
Results from the WOW.Com Content Network
An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...
Ballistic capture orbit: a lower-energy orbit than a Hohmann transfer orbit, a spacecraft moving at a lower orbital velocity than the target celestial body is inserted into a similar orbit, allowing the planet or moon to move toward it and gravitationally snag it into orbit around the celestial body. [13]
Retrograde orbit: the satellite (red) orbits in the direction opposite to the rotation of its primary (blue/black) Retrograde motion in astronomy is, in general, orbital or rotational motion of an object in the direction opposite the rotation of its primary, that is, the central object (right figure).
From a circular orbit, thrust applied in a direction opposite to the satellite's motion changes the orbit to an elliptical one; the satellite will descend and reach the lowest orbital point (the periapse) at 180 degrees away from the firing point; then it will ascend back. The period of the resultant orbit will be less than that of the original ...
In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1 (thus excluding the circular orbit).
The station remains in low-Earth orbit, meaning it is partly protected by Earth’s magnetic field, as well as heavy shielding incorporated into the orbiting laboratory’s design.
A wide variety of sources [5] [6] [7] define LEO in terms of altitude.The altitude of an object in an elliptic orbit can vary significantly along the orbit. Even for circular orbits, the altitude above ground can vary by as much as 30 km (19 mi) (especially for polar orbits) due to the oblateness of Earth's spheroid figure and local topography.
A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections , as every Kepler orbit is a conic section.