enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sidereal time - Wikipedia

    en.wikipedia.org/wiki/Sidereal_time

    Picture of a poster clarifying the difference between a sidereal day and the more conventional solar day Animation showing the difference between a sidereal day and a solar day. Sidereal time ("sidereal" pronounced / s aɪ ˈ d ɪər i əl, s ə-/ sy-DEER-ee-əl, sə-) is a system of timekeeping used especially by astronomers.

  3. Time standard - Wikipedia

    en.wikipedia.org/wiki/Time_standard

    A mean solar day is about 3 minutes 56 seconds longer than a mean sidereal day, or 1 ⁄ 366 more than a mean sidereal day. In astronomy, sidereal time is used to predict when a star will reach its highest point in the sky. For accurate astronomical work on land, it was usual to observe sidereal time rather than solar time to measure mean solar ...

  4. Diurnal motion - Wikipedia

    en.wikipedia.org/wiki/Diurnal_motion

    The daily arc path of an object on the celestial sphere, including the possible part below the horizon, has a length proportional to the cosine of the declination.Thus, the speed of the diurnal motion of a celestial object equals this cosine times 15° per hour, 15 arcminutes per minute, or 15 arcseconds per second.

  5. Geosynchronous orbit - Wikipedia

    en.wikipedia.org/wiki/Geosynchronous_orbit

    A geosynchronous orbit (sometimes abbreviated GSO) is an Earth-centered orbit with an orbital period that matches Earth's rotation on its axis, 23 hours, 56 minutes, and 4 seconds (one sidereal day). The synchronization of rotation and orbital period means that, for an observer on Earth's surface, an object in geosynchronous orbit returns to ...

  6. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    Thus, the sidereal day is shorter than the stellar day by about 8.4 ms. [37] Both the stellar day and the sidereal day are shorter than the mean solar day by about 3 minutes 56 seconds. This is a result of the Earth turning 1 additional rotation, relative to the celestial reference frame, as it orbits the Sun (so 366.24 rotations/y).

  7. Solar time - Wikipedia

    en.wikipedia.org/wiki/Solar_time

    On a prograde planet like the Earth, the sidereal day is shorter than the solar day. At time 1, the Sun and a certain distant star are both overhead. At time 2, the planet has rotated 360° and the distant star is overhead again (1→2 = one sidereal day). But it is not until a little later, at time 3, that the Sun is overhead again (1→3 = one solar day). More simply, 1→2 is a complete ...

  8. Tidal locking - Wikipedia

    en.wikipedia.org/wiki/Tidal_locking

    Given enough time, this would create a mutual tidal locking between Earth and the Moon. The length of Earth's day would increase and the length of a lunar month would also increase. Earth's sidereal day would eventually have the same length as the Moon's orbital period, about 47 times the length of

  9. Coriolis frequency - Wikipedia

    en.wikipedia.org/wiki/Coriolis_frequency

    The rotation rate of the Earth (Ω = 7.2921 × 10 −5 rad/s) can be calculated as 2π / T radians per second, where T is the rotation period of the Earth which is one sidereal day (23 h 56 min 4.1 s). [2] In the midlatitudes, the typical value for is about 10 −4 rad/s.