enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Glycolysis produces only 2 ATP molecules, but somewhere between 30 and 36 ATPs are produced by the oxidative phosphorylation of the 10 NADH and 2 succinate molecules made by converting one molecule of glucose to carbon dioxide and water, [6] while each cycle of beta oxidation of a fatty acid yields about 14 ATPs. These ATP yields are ...

  3. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    Electron transport chains often produce energy in the form of a transmembrane electrochemical potential gradient. The gradient can be used to transport molecules across membranes. Its energy can be used to produce ATP or to do useful work, for instance mechanical work of a rotating bacterial flagella .

  4. Galvanic cell - Wikipedia

    en.wikipedia.org/wiki/Galvanic_cell

    However, the same reaction can be carried out in a galvanic cell, allowing some of the chemical energy released to be converted into electrical energy. In its simplest form, a half-cell consists of a solid metal (called an electrode ) that is submerged in a solution; the solution contains cations (+) of the electrode metal and anions (−) to ...

  5. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    The energy from the redox reactions creates an electrochemical proton gradient that drives the synthesis of adenosine triphosphate (ATP). In aerobic respiration, the flow of electrons terminates with molecular oxygen as the final electron acceptor. In anaerobic respiration, other electron acceptors are used, such as sulfate.

  6. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    Peter D. Mitchell proposed the chemiosmotic hypothesis in 1961. [1] In brief, the hypothesis was that most adenosine triphosphate (ATP) synthesis in respiring cells comes from the electrochemical gradient across the inner membranes of mitochondria by using the energy of NADH and FADH 2 formed during the oxidative breakdown of energy-rich molecules such as glucose.

  7. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    To fully oxidize the equivalent of one glucose molecule, two acetyl-CoA must be metabolized by the Krebs cycle. Two low-energy waste products, H 2 O and CO 2, are created during this cycle. [12] [13] The citric acid cycle is an 8-step process involving 18 different enzymes and co-enzymes.

  8. Carbon cycle - Wikipedia

    en.wikipedia.org/wiki/Carbon_cycle

    The geologic component of the carbon cycle operates slowly in comparison to the other parts of the global carbon cycle. It is one of the most important determinants of the amount of carbon in the atmosphere, and thus of global temperatures. [29] Most of the Earth's carbon is stored inertly in the Earth's lithosphere. [7]

  9. Electrochemistry - Wikipedia

    en.wikipedia.org/wiki/Electrochemistry

    The electrochemical reaction that produced current was (to a useful degree) reversible, allowing electrical energy and chemical energy to be interchanged as needed. Common lead acid batteries contain a mixture of sulfuric acid and water, as well as lead plates. The most common mixture used today is 30% acid.