Search results
Results from the WOW.Com Content Network
The bow shock forms the outermost layer of the magnetosphere; the boundary between the magnetosphere and the surrounding medium. For stars, this is usually the boundary between the stellar wind and interstellar medium; for planets, the speed of the solar wind there decreases as it approaches the magnetopause. [6]
The stars with the most confirmed planets are the Sun (the Solar System's star) and Kepler-90, with 8 confirmed planets each, followed by TRAPPIST-1 with 7 planets. The 1,033 multiplanetary systems are listed below according to the star's distance from Earth. Proxima Centauri, the closest star to the Solar System, has three planets (b, c and d).
[f] Six planets, seven dwarf planets, and other bodies have orbiting natural satellites, which are commonly called 'moons'. The Solar System is constantly flooded by the Sun's charged particles, the solar wind, forming the heliosphere. Around 75–90 astronomical units from the Sun, [g] the solar wind is halted, resulting in the heliopause.
The magnetosphere of Jupiter is the cavity created in the solar wind by Jupiter's magnetic field.Extending up to seven million kilometers in the Sun's direction and almost to the orbit of Saturn in the opposite direction, Jupiter's magnetosphere is the largest and most powerful of any planetary magnetosphere in the Solar System, and by volume the largest known continuous structure in the Solar ...
The magnetosphere contains charged particles that are trapped from the stellar wind, which then move along these field lines. As the star rotates, the magnetosphere rotates with it, dragging along the charged particles. [13] As stars emit matter with a stellar wind from the photosphere, the magnetosphere creates a torque on the ejected matter.
The magnetosphere of Saturn is the cavity created in the flow of the solar wind by the planet's internally generated magnetic field. Discovered in 1979 by the Pioneer 11 spacecraft, Saturn's magnetosphere is the second largest of any planet in the Solar System after Jupiter .
The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons.
The boundary between the region dominated by the planet's magnetic field (i.e., the magnetosphere) and the plasma in the interplanetary medium is the magnetopause. The configuration equivalent to a flat, infinitely conductive plate is achieved by placing an image dipole (green arrow at left of schematic) at twice the distance from the planet's ...