enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sixth power - Wikipedia

    en.wikipedia.org/wiki/Sixth_power

    ) 3 and (3 2) 3, respectively) and as squares ((2 3) 2 and (3 3) 2, respectively) In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So: n 6 = n × n × n × n × n × n. Sixth powers can be formed by multiplying a number by its fifth power, multiplying the square of a number by its ...

  3. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    As one special case, it can be used to prove that if n is a positive integer then 4 divides () if and only if n is not a power of 2. It follows from Legendre's formula that the p -adic exponential function has radius of convergence p − 1 / ( p − 1 ) {\displaystyle p^{-1/(p-1)}} .

  4. 1024 (number) - Wikipedia

    en.wikipedia.org/wiki/1024_(number)

    1024 is a power of two: 2 10 (2 to the tenth power). [1] It is the nearest power of two from decimal 1000 and senary 10000 6 (decimal 1296). It is the 64th quarter square. [2] [3] 1024 is the smallest number with exactly 11 divisors (but there are smaller numbers with more than 11 divisors; e.g., 60 has 12 divisors) (sequence A005179 in the OEIS).

  5. Gradian - Wikipedia

    en.wikipedia.org/wiki/Gradian

    [18] [19] Today, the degree, ⁠ 1 / 360 ⁠ of a turn, or the mathematically more convenient radian, ⁠ 1 / 2 π ⁠ of a turn (used in the SI system of units) is generally used instead. In the 1970s – 1990s, most scientific calculators offered the gon (gradian), as well as radians and degrees, for their trigonometric functions . [ 23 ]

  6. Divided power structure - Wikipedia

    en.wikipedia.org/wiki/Divided_power_structure

    A divided power structure (or PD-structure, after the French puissances divisées) on I is a collection of maps : for n = 0, 1, 2, ... such that: γ 0 ( x ) = 1 {\displaystyle \gamma _{0}(x)=1} and γ 1 ( x ) = x {\displaystyle \gamma _{1}(x)=x} for x ∈ I {\displaystyle x\in I} , while γ n ( x ) ∈ I {\displaystyle \gamma _{n}(x)\in I} for ...

  7. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Also unlike addition and multiplication, exponentiation is not associative: for example, (2 3) 2 = 8 2 = 64, whereas 2 (3 2) = 2 9 = 512. Without parentheses, the conventional order of operations for serial exponentiation in superscript notation is top-down (or right -associative), not bottom-up [ 27 ] [ 28 ] [ 29 ] (or left -associative).

  8. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...

  9. Fifth power (algebra) - Wikipedia

    en.wikipedia.org/wiki/Fifth_power_(algebra)

    In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n . Fifth powers are also formed by multiplying a number by its fourth power , or the square of a number by its cube .