Search results
Results from the WOW.Com Content Network
In statistics, a population is a set of similar items or events which is of interest for some question or experiment. [1] [2] A statistical population can be a group of existing objects (e.g. the set of all stars within the Milky Way galaxy) or a hypothetical and potentially infinite group of objects conceived as a generalization from experience (e.g. the set of all possible hands in a game of ...
In statistics, the concept of the shape of a probability distribution arises in questions of finding an appropriate distribution to use to model the statistical properties of a population, given a sample from that population.
Frequency distribution: a table that displays the frequency of various outcomes in a sample. Relative frequency distribution: a frequency distribution where each value has been divided (normalized) by a number of outcomes in a sample (i.e. sample size). Categorical distribution: for discrete random variables with a finite set of values.
If a population exactly follows a known and defined distribution, for example the normal distribution, then a small set of parameters can be measured which provide a comprehensive description of the population, and can be considered to define a probability distribution for the purposes of extracting samples from this population.
Descriptive statistics are most often concerned with two sets of properties of a distribution (sample or population): central tendency (or location) seeks to characterize the distribution's central or typical value, while dispersion (or variability) characterizes the extent to which members of the distribution depart from its center and each other.
The Cauchy distribution, an example of a distribution which does not have an expected value or a variance. In physics it is usually called a Lorentzian profile, and is associated with many processes, including resonance energy distribution, impact and natural spectral line broadening and quadratic stark line broadening.
With finite samples, approximation results measure how close a limiting distribution approaches the statistic's sample distribution: For example, with 10,000 independent samples the normal distribution approximates (to two digits of accuracy) the distribution of the sample mean for many population distributions, by the Berry–Esseen theorem. [14]
In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.