Search results
Results from the WOW.Com Content Network
The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree T with a root, and given vertices v, w, call w a successor of v if the unique path from the root to w contains v, and call w an immediate successor of v if additionally the path from v to w contains no other vertex.
In mathematics, the Farey sequence of order n is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, [a] which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size.
For example, if a player pitched all of the 4th, 5th and 6th innings, plus achieving 2 outs in the 7th inning, his innings pitched column for that game would be listed as 3.2, the equivalent of 3 + 2 ⁄ 3 (which is sometimes used as an alternative by some record keepers). In this usage, only the fractional part of the number is written in ...
In a fraction, the number of equal parts being described is the numerator (from Latin: numerātor, "counter" or "numberer"), and the type or variety of the parts is the denominator (from Latin: dēnōminātor, "thing that names or designates"). [2] [3] As an example, the fraction 8 / 5 amounts to eight parts, each of which is of the ...
[6]: p.7 For example, parent (3, 4, 5) has excircle radii equal to 2, 3 and 6. These are precisely the inradii of the three children (5, 12, 13), (15, 8, 17) and (21, 20, 29) respectively. If either of A or C is applied repeatedly from any Pythagorean triple used as an initial condition, then the dynamics of any of a , b , and c can be ...
Computable number: A real number whose digits can be computed by some algorithm. Period: A number which can be computed as the integral of some algebraic function over an algebraic domain. Definable number: A real number that can be defined uniquely using a first-order formula with one free variable in the language of set theory.
A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758 Extravagant numbers
For instance, the continued fraction representation of 13 / 9 is [1;2,4] and its two children are [1;2,5] = 16 / 11 (the right child) and [1;2,3,2] = 23 / 16 (the left child). It is clear that for each finite continued fraction expression one can repeatedly move to its parent, and reach the root [1;] = 1 / 1 of ...