Search results
Results from the WOW.Com Content Network
A linear encoder is a sensor, transducer or readhead paired with a scale that encodes position. The sensor reads the scale in order to convert the encoded position into an analog or digital signal , which can then be decoded into position by a digital readout (DRO) or motion controller.
The string potentiometer may be connected as a three-wire tapped resistor (voltage divider), in a control circuit, or may be packaged with electronics to produce a measurement signal in a useful form, such as a variable voltage 0-10 VDC, variable current 4-20mA, pulse encoder, Bus (DeviceNet and Canbus) and RS-232 communications.
The codewords in a linear block code are blocks of symbols that are encoded using more symbols than the original value to be sent. [2] A linear code of length n transmits blocks containing n symbols. For example, the [7,4,3] Hamming code is a linear binary code which represents 4-bit messages using 7-bit codewords. Two distinct codewords differ ...
Absolute encoders give an absolute position value. Incremental encoders count movement rather than position. With detection of a datum position and the use of a counter, an absolute position may be derived. The position may be measured as either linear or angular position Linear encoder, converts linear position to an electronic signal
Linear timecode waveform as displayed in Audacity with 80 bit data frame highlighted. The basic format is an 80-bit code that gives the time of day to the second, and the frame number within the second. Values are stored in binary-coded decimal, least significant bit first. There are thirty-two bits of user data, usually used for a reel number ...
Optional CIC61508 safety monitor. Arduino IDE supported via add-in, plus Eclipse-based tools with multicore debugger. MBZ Pro WiFi Atmega328P-PU MaxBlitz: MBZ Pro Mega is an Arduino compatible stand-alone board with a prototyping area and built-in Wi-Fi. Featuring a compact design, it helps to shrink Arduino projects and make it permanent.
Code-excited linear prediction (CELP) is a linear predictive speech coding algorithm originally proposed by Manfred R. Schroeder and Bishnu S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction (RELP) and linear predictive coding (LPC) vocoders (e.g., FS-1015).
In computing, a linear-feedback shift register (LFSR) is a shift register whose input bit is a linear function of its previous state. The most commonly used linear function of single bits is exclusive-or (XOR). Thus, an LFSR is most often a shift register whose input bit is driven by the XOR of some bits of the overall shift register value.