Search results
Results from the WOW.Com Content Network
Central nervous system fatigue, or central fatigue, is a form of fatigue that is associated with changes in the synaptic concentration of neurotransmitters within the central nervous system (CNS; including the brain and spinal cord) which affects exercise performance and muscle function and cannot be explained by peripheral factors that affect muscle function.
The largest contribution to the allostatic load is the effect of stress on the brain. Allostasis is the system which helps to achieve homeostasis. [18] Homeostasis is the regulation of physiological processes, whereby systems in the body respond to the state of the body and to the external environment. [18]
Short-term synaptic depression can affect many synapses of many different types of neurons. [5] The existence and observations of synaptic fatigue are accepted universally, although the exact mechanisms underlying the phenomenon are not completely understood. It is generally seen in mature cells at high frequencies of stimuli (>1 Hz).
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]
In biology, most biochemical processes strive to maintain equilibrium (homeostasis), a steady state that exists more as an ideal and less as an achievable condition. Environmental factors, internal or external stimuli, continually disrupt homeostasis; an organism's present condition is a state of constant flux moving about a homeostatic point ...
Fatigue in a medical context is used to cover experiences of low energy that are not caused by normal life. [2] [3]A 2021 review proposed a definition for fatigue as a starting point for discussion: "A multi-dimensional phenomenon in which the biophysiological, cognitive, motivational and emotional state of the body is affected resulting in significant impairment of the individual's ability to ...
Pathways are required for the maintenance of homeostasis within an organism and the flux of metabolites through a pathway is regulated depending on the needs of the cell and the availability of the substrate. The end product of a pathway may be used immediately, initiate another metabolic pathway or be stored for later use.
Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). [1] The proper balance between the acids and bases (i.e. the pH) in the ECF is crucial for the normal physiology of the body—and for cellular metabolism . [ 1 ]