Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
The most famous example is the hyperchromicity of DNA that occurs when the DNA duplex is denatured. [1] The UV absorption is increased when the two single DNA strands are being separated, either by heat or by addition of denaturant or by increasing the pH level. The opposite, a decrease of absorbance is called hypochromicity.
This is because the smaller plants do not have enough volume to create a considerable amount of heat. Large plants, on the other hand, have a lot of mass to create and retain heat. [5] Thermogenic plants are also protogynous, meaning that the female part of the plant matures before the male part of the same plant. This reduces inbreeding ...
The pineapple is an example of a CAM plant.. Crassulacean acid metabolism, also known as CAM photosynthesis, is a carbon fixation pathway that evolved in some plants as an adaptation to arid conditions [1] that allows a plant to photosynthesize during the day, but only exchange gases at night.
Transpirational cooling is the cooling provided as plants transpire water. Excess heat generated from solar radiation is damaging to plant cells and thermal injury occurs during drought or when there is rapid transpiration which produces wilting. [1]
Schematic of typical plant cell. Cytorrhysis is the permanent and irreparable damage to the cell wall after the complete collapse of a plant cell due to the loss of internal positive pressure (hydraulic turgor pressure). [1] Positive pressure within a plant cell is required to maintain the upright structure of the cell wall. [1]
Alternatively, evaporative heat loss for cooling occurs when temperatures above the TNZ, the upper critical zone (UCT), are realized (Speakman and Keijer 2013). When the T a reaches too far above the UCT, the rate of heat gain and rate of heat production become higher than the rate of heat dissipation (heat loss through evaporative cooling ...
The heat shock response (HSR) is a cell stress response that increases the number of molecular chaperones to combat the negative effects on proteins caused by stressors such as increased temperatures, oxidative stress, and heavy metals. [1]