Search results
Results from the WOW.Com Content Network
By default, the output value is rounded to adjust its precision to match that of the input. An input such as 1234 is interpreted as 1234 ± 0.5, while 1200 is interpreted as 1200 ± 50, and the output value is displayed accordingly, taking into account the scale factor used in the conversion.
Metric prefixes; Text Symbol Factor or; yotta Y 10 24: 1 000 000 000 000 000 000 000 000: zetta Z 10 21: 1 000 000 000 000 000 000 000: exa E 10 18: 1 000 000 000 000 000 000: peta P 10 15: 1 000 000 000 000 000: tera T
Last, multiply the original expression of the physical value by the fraction, called a conversion factor, to obtain the same physical value expressed in terms of a different unit. Note: since valid conversion factors are dimensionless and have a numerical value of one, multiplying any physical quantity by such a conversion factor (which is 1 ...
By {{Convert}} default, the conversion result will be rounded either to precision comparable to that of the input value (the number of digits after the decimal point—or the negative of the number of non-significant zeroes before the point—is increased by one if the conversion is a multiplication by a number between 0.02 and 0.2, remains the ...
That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on. In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32".
The conversion between different SI units for one and the same physical quantity is always through a power of ten. This is why the SI (and metric systems more generally) are called decimal systems of measurement units. [10] The grouping formed by a prefix symbol attached to a unit symbol (e.g. ' km ', ' cm ') constitutes a new inseparable unit ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
By assuming a form of Coulomb's law in which the Coulomb constant k e is taken as unity, Maxwell then determined that the dimensions of an electrostatic unit of charge were Q = T −1 L 3/2 M 1/2, [15] which, after substituting his M = T −2 L 3 equation for mass, results in charge having the same dimensions as mass, viz. Q = T −2 L 3.