Search results
Results from the WOW.Com Content Network
Sometimes precedence between conjunction and disjunction is unspecified requiring to provide it explicitly in given formula with parentheses. The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
A logical formula is considered to be in DNF if it is a disjunction of one or more conjunctions of one or more literals. [2] [3] [4] A DNF formula is in full disjunctive normal form if each of its variables appears exactly once in every conjunction and each conjunction appears at most once (up to the order of variables).
In logic, mathematics and linguistics, and is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as ∧ {\displaystyle \wedge } [ 1 ] or & {\displaystyle \&} or K {\displaystyle K} (prefix) or × {\displaystyle \times } or ⋅ {\displaystyle \cdot } [ 2 ] in ...
A logical formula is considered to be in CNF if it is a conjunction of one or more disjunctions of one or more literals. As in disjunctive normal form (DNF), the only propositional operators in CNF are or ( ∨ {\displaystyle \vee } ), and ( ∧ {\displaystyle \wedge } ), and not ( ¬ {\displaystyle \neg } ).
Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well as the numerous mismatches between classical disjunction and its nearest equivalents in natural languages. [1] [2] An operand of a disjunction is a disjunct. [3]
It deals with propositions [1] (which can be true or false) [10] and relations between propositions, [11] including the construction of arguments based on them. [12] Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and ...
In intuitionistic logic, it is not true that every formula is logically equivalent to a prenex formula. The negation connective is one obstacle, but not the only one. The implication operator is also treated differently in intuitionistic logic than classical logic; in intuitionistic logic, it is not definable using disjunction and negation.
If one is given a truth table of a logical function, it is possible to write the function as a "product of sums" or "product of maxterms". This is a special form of conjunctive normal form . For example, if given the truth table for the carry-out bit co of one bit position's logic of an adder circuit, as a function of x and y from the addends ...