Ads
related to: orthogonal matrix example 3x3 function worksheet printable form 941uslegalforms.com has been visited by 100K+ users in the past month
dochub.com has been visited by 100K+ users in the past month
signnow.com has been visited by 100K+ users in the past month
wonderful features with reasonable cost - G2 Crow
Search results
Results from the WOW.Com Content Network
More specifically, they can be characterized as orthogonal matrices with determinant 1; that is, a square matrix R is a rotation matrix if and only if R T = R −1 and det R = 1. The set of all orthogonal matrices of size n with determinant +1 is a representation of a group known as the special orthogonal group SO( n ) , one example of which is ...
Visual understanding of multiplication by the transpose of a matrix. If A is an orthogonal matrix and B is its transpose, the ij-th element of the product AA T will vanish if i≠j, because the i-th row of A is orthogonal to the j-th row of A. An orthogonal matrix is the real specialization of a unitary matrix, and thus always a normal matrix.
A matrix will preserve or reverse orientation according to whether the determinant of the matrix is positive or negative. For an orthogonal matrix R, note that det R T = det R implies (det R) 2 = 1, so that det R = ±1. The subgroup of orthogonal matrices with determinant +1 is called the special orthogonal group, denoted SO(3).
Orthogonal matrix: A matrix whose inverse is equal to its transpose, A −1 = A T. They form the orthogonal group. Orthonormal matrix: A matrix whose columns are orthonormal vectors. Partially Isometric matrix: A matrix that is an isometry on the orthogonal complement of its kernel. Equivalently, a matrix that satisfies AA * A = A.
A set of vectors in an inner product space is called pairwise orthogonal if each pairing of them is orthogonal. Such a set is called an orthogonal set (or orthogonal system). If the vectors are normalized, they form an orthonormal system. An orthogonal matrix is a matrix whose column vectors are orthonormal to each other.
In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of V. The columns of the matrix form another orthonormal basis of V.
Ads
related to: orthogonal matrix example 3x3 function worksheet printable form 941uslegalforms.com has been visited by 100K+ users in the past month
dochub.com has been visited by 100K+ users in the past month
signnow.com has been visited by 100K+ users in the past month
wonderful features with reasonable cost - G2 Crow