Search results
Results from the WOW.Com Content Network
Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables , which is solved by constraint satisfaction methods.
Constraint satisfaction toolkits are software libraries for imperative programming languages that are used to encode and solve a constraint satisfaction problem. Cassowary constraint solver, an open source project for constraint satisfaction (accessible from C, Java, Python and other languages). Comet, a commercial programming language and toolkit
A direct correspondence between the constraint satisfaction problem and the homomorphism problem can be established. For a given constraint satisfaction problem, one can build a pair of relational structures, the first encoding the variables and the signatures of constraints, the second encoding the domains and the relations of the constraints.
The randomness helps min-conflicts avoid local minima created by the greedy algorithm's initial assignment. In fact, Constraint Satisfaction Problems that respond best to a min-conflicts solution do well where a greedy algorithm almost solves the problem. Map coloring problems do poorly with Greedy Algorithm as well as Min-Conflicts. Sub areas ...
An example constraint satisfaction problem; this problem is binary, and the constraints are represented by edges of this graph. A decomposition tree; for every edge of the original graph, there is a node that contains both its endpoints; all nodes containing a variable are connected
The constrained-optimization problem (COP) is a significant generalization of the classic constraint-satisfaction problem (CSP) model. [1] COP is a CSP that includes an objective function to be optimized. Many algorithms are used to handle the optimization part.
In constraint satisfaction, the AC-3 algorithm (short for Arc Consistency Algorithm #3) is one of a series of algorithms used for the solution of constraint satisfaction problems (or CSPs). It was developed by Alan Mackworth in 1977. The earlier AC algorithms are often considered too inefficient, and many of the later ones are difficult to ...
In constraint satisfaction, local search is an incomplete method for finding a solution to a problem. It is based on iteratively improving an assignment of the variables until all constraints are satisfied. In particular, local search algorithms typically modify the value of a variable in an assignment at each step.