enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  3. Biplot - Wikipedia

    en.wikipedia.org/wiki/Biplot

    A biplot overlays a score plot with a loading plot. A biplot allows information on both samples and variables of a data matrix to be displayed graphically. Samples are displayed as points while variables are displayed either as vectors, linear axes or nonlinear trajectories.

  4. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    3. Now transform this vector back to the scale of the actual covariates, using the selected PCA loadings (the eigenvectors corresponding to the selected principal components) to get the final PCR estimator (with dimension equal to the total number of covariates) for estimating the regression coefficients characterizing the original model.

  5. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  6. Scree plot - Wikipedia

    en.wikipedia.org/wiki/Scree_plot

    The scree plot is used to determine the number of factors to retain in an exploratory factor analysis (FA) or principal components to keep in a principal component analysis (PCA). The procedure of finding statistically significant factors or components using a scree plot is also known as a scree test.

  7. Varimax rotation - Wikipedia

    en.wikipedia.org/wiki/Varimax_rotation

    Varimax is so called because it maximizes the sum of the variances of the squared loadings (squared correlations between variables and factors). Preserving orthogonality requires that it is a rotation that leaves the sub-space invariant.

  8. Multilinear principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Multilinear_principal...

    Multilinear principal component analysis (MPCA) is a multilinear extension of principal component analysis (PCA) that is used to analyze M-way arrays, also informally referred to as "data tensors". M-way arrays may be modeled by linear tensor models, such as CANDECOMP/Parafac, or by multilinear tensor models, such as multilinear principal ...

  9. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    The unstandardized PCA applied to TCDT, the column having the weight , leads to the results of MCA. This equivalence is fully explained in a book by Jérôme Pagès. [ 7 ] It plays an important theoretical role because it opens the way to the simultaneous treatment of quantitative and qualitative variables.