Search results
Results from the WOW.Com Content Network
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).
A more precise version of the theorem quoted above requires specifying the class of functions on which the convolution is defined, and also requires assuming in addition that S must be a continuous linear operator with respect to the appropriate topology.
If x is the distribution function of a random variable on the real line, then the n th convolution power of x gives the distribution function of the sum of n independent random variables with identical distribution x. The central limit theorem states that if x is in L 1 and L 2 with mean zero and variance σ 2, then
Most of the important attributes of the complex DFT, including the inverse transform, the convolution theorem, and most fast Fourier transform (FFT) algorithms, depend only on the property that the kernel of the transform is a principal root of unity. These properties also hold, with identical proofs, over arbitrary rings.
The original proof by Titchmarsh uses complex-variable techniques, and is based on the Phragmén–Lindelöf principle, Jensen's inequality, Carleman's theorem, and Valiron's theorem. The theorem has since been proven several more times, typically using either real-variable [3] [4] [5] or complex-variable [6] [7] [8] methods.
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
This fact makes it possible to define convolution quotients by saying that for two functions ƒ, g, the pair (ƒ, g) has the same convolution quotient as the pair (h * ƒ,h * g). As with the construction of the rational numbers from the integers, the field of convolution quotients is a direct extension of the convolution ring from which it was ...
There are two common methods used to implement discrete convolution: the definition of convolution and fast Fourier transformation (FFT and IFFT) according to the convolution theorem. To calculate the optical broad-beam response, the impulse response of a pencil beam is convolved with the beam function.