Search results
Results from the WOW.Com Content Network
An arterial blood gas (ABG) test, or arterial blood gas analysis (ABGA) measures the amounts of arterial gases, such as oxygen and carbon dioxide. An ABG test requires that a small volume of blood be drawn from the radial artery with a syringe and a thin needle , [ 1 ] but sometimes the femoral artery in the groin or another site is used.
A blood gas test or blood gas analysis tests blood to measure blood gas tension values and blood pH.It also measures the level and base excess of bicarbonate.The source of the blood is reflected in the name of each test; arterial blood gases come from arteries, venous blood gases come from veins and capillary blood gases come from capillaries. [1]
Reference ranges (reference intervals) for blood tests are sets of values used by a health professional to interpret a set of medical test results from blood samples. Reference ranges for blood tests are studied within the field of clinical chemistry (also known as "clinical biochemistry", "chemical pathology" or "pure blood chemistry"), the ...
arterial blood gas: hco 3 − = 24 p a co 2 = 40 p a o 2 = 95 ph = 7.40 alveolar gas: p a co 2 = 36 p a o 2 = 105 a-a g = 10 other: ca = 9.5 mg 2+ = 2.0 po 4 = 1 ck = 55 be = −0.36 ag = 16 serum osmolarity/renal: pmo = 300 pco = 295 pog = 5 bun:cr = 20 urinalysis: una + = 80 ucl − = 100 uag = 5 fena = 0.95 uk + = 25 usg = 1.01 ucr = 60 uo ...
arterial blood gas: hco 3 − = 24 p a co 2 = 40 p a o 2 = 95 ph = 7.40 alveolar gas: p a co 2 = 36 p a o 2 = 105 a-a g = 10 other: ca = 9.5 mg 2+ = 2.0 po 4 = 1 ck = 55 be = −0.36 ag = 16 serum osmolarity/renal: pmo = 300 pco = 295 pog = 5 bun:cr = 20 urinalysis: una + = 80 ucl − = 100 uag = 5 fena = 0.95 uk + = 25 usg = 1.01 ucr = 60 uo ...
Recall that the relationship represented in a Davenport diagram is a relationship between three variables: P CO 2, bicarbonate concentration and pH.Thus, Fig. 7 can be thought of as a topographical map—that is, a two-dimensional representation of a three-dimensional surface—where each isopleth indicates a different partial pressure or “altitude.”
The body maintains a stable level of oxygen saturation for the most part by chemical processes of aerobic metabolism associated with breathing.Using the respiratory system, red blood cells, specifically the hemoglobin, gather oxygen in the lungs and distribute it to the rest of the body.
The arteriovenous oxygen difference is usually taken by comparing the difference in the oxygen concentration of oxygenated blood in the femoral, brachial, or radial artery and the oxygen concentration in the deoxygenated blood from the mixed supply found in the pulmonary artery (as an indicator of the typical mixed venous supply).